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Abstract. The proptotype chemical reaction scheme, the cubic autocatalator, A + 2B - 3B; B C is taken in
a closed system, with A formed from the precursor P by the simple step P A. The pooled chemical approximation
is invoked whereby the concentration of P can be assumed to remain constant throughout. The effects of allowing
the quadratic autocatalytic reaction A + B 2B and the uncatalysed reaction A B in the scheme are
considered in detail. The full scheme is described by the non-dimensional parameters p (measuring the reaction
rate of the initiation step) and s and r (measuring the reaction rates of the quadratic autocatalytic and the
uncatalysed steps respectively). It is shown, provided only that r or s (or both) are non-zero, no matter how small,
the solution remains bounded for all (positive) values of , whereas with r = s = 0 the solution is bounded only
for p > ( = 0.900 32). It is shown that with r = 0 and s 0 the governing equations have a Hopf
bifurcation at It = 1 - s producing a stable limit cycle which exists for all p in 0 < < 1 - s. The behaviour
of these limit cycles as p 0 is also discussed.

1. Introduction

In recent years several prototype isothermal chemical reaction schemes have been proposed
in an attempt to model the oscillatory behaviour observed in certain chemical reactions. The
simplest and, arguably, the most chemically viable, is the cubic autocatalator introduced
originally by Gray and Scott [1]. This scheme is based on a cubic autocatalytic step and the
simple first-order decay of the catalyst, namely

A + 2B 3B rate k,ab2, (1)

B C rate k2b. (2)

(Where a and b are the concentrations of the reactants A and B and k, and k2 are rate
constants). The basic scheme given by (1) and (2) has been studied extensively for an open
system (the C.S.T.R.), see, for example, recent papers by Gray and Scott [2], D'Anna et al.
[3], and Gray and Roberts [4], where it has been shown to exhibit a complex pattern of
behaviour.

More recently this scheme has been used to model reactions in closed systems with now
the inflow of fresh reactant A in the C.S.T.R. replaced by the production of A by the slow
first-order decay of a precursor P

P - A rate kop. (3)

Consequent on this is the assumption that the reactant P is present in large excess (relative
to the intermediates A and B). In such circumstances it is usual to invoke the "pooled
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chemical approximation" and make the further assumption whereby the concentration of P
is taken to be constant (at its initial value po) throughout the reaction.

A major criticism of this scheme (and other similar schemes) is that they are selective in
which reaction steps are considered. In this case just the termolecular step (1) is included
whereas, in reality, both the uncatalysed reaction

A - B rate k 3a (4)

and the quadratic autocatalytic reaction

A + B - 2B rate k4 ab (5)

will also be present. These last two reaction steps are assumed to be slow compared with the
basic step (1) but even so they can have a considerable effect in the overall behaviour. It was
shown, [5], that the inclusion of the uncatalysed reaction (4) completely changes the oscil-
latory behaviour, and as it is the possibility of obtaining oscillations in these schemes that
is of predominant interest, it is important to examine the influence of the extra steps (4) and
(5) on the basic scheme (1), (2) and (3).

Following [5] and [6] the non-dimensional equations governing the full reaction scheme
(1)-(5) are

dx= ,u- x y 2 - rx - xy, (6(i))

dyd = X 2 - y + rx + sxy, (6(ii))

where x = (kl /k2)1 2 a, y = (k, /k2)'/2b are the non-dimensional concentrations of A and B,
t = k2t(t is time) and pu = (k,/k 2) kopo/k2 is a constant. r and s are respectively constants
describing the relative importance of the uncatalysed step (4) and the quadratic autocatalytic
step (5) given by r = k 3/k2 and s = (k4 /(k 2k,)'12, (note that in [5] the reciprocal of r was
used).

The basic scheme (with r = s = 0) was considered in some detail in [6], where it was
shown that there is one (finite) stationary state x = -', y, = which is stable for p > 1.
The change in stability at , = 1 gives rise (through a Hopf bifurcation) to a stable limit cycle
which exists for yc, < ju < 1 with juc = 0.900 32. For 0 < < ,c the solution becomes
unbounded, with x -- ut, y 0 as t o. The effect of including the uncatalysed reaction
(r -A 0) was considered in [5] where it was shown that the effect of including this extra term
was to introduce an extra Hopf bifurcation point (provided r < ) there now being two
values of p at which Hopf bifurcation occurs (O and p1 (say) with 0 < 0 < , < 1).
Further it was shown that, provided only that r # 0, i.e., r can be arbitrarily small, a stable
limit cycle existed (i.e., the solution remained bounded and oscillatory) for all in the range
p0 < < ,. When r > the stationary state remained stable for all u.

The purpose of this paper is to consider the full reaction scheme (6) in which the terms
involving both r and s are included. We find that there is a range of values of r and s
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(r 0, s • 0) such that for a given value of r and s there are two values of p at which a
Hopf bifurcation takes place, with a stable limit cycle existing for all # between them. So in
this respect the inclusion of the extra quadratic step (5) does not radically alter the behaviour
seen with just the uncatalysed step included. However, when we consider the case with only
s non-zero (i.e., equations (6) with r = 0) we find a different situation to that which holds
when only the uncatalysed step (4) is included, as described in [5]. Here there is just one value
of p = o0 at which a Hopf bifurcation occurs (0 = 1 - s) with a stable limit cycle existing
for all it in the open interval 0 < < 0. To show that this is the case it is necessary to
consider the phase plane at infinity, as was needed in [6] for the basic scheme. A further
consideration of these limit cycles shows that, though their amplitudes remain finite, the
periods become infinite (proportional to - ) as - 0. Then we can conclude that the basic
scheme is also structurally unstable with respect to the inclusion of the quadratic step, i.e.,
the solution remains bounded for all p provided only that s - 0.

2. Phase-plane analysis for the general case (r ,a 0, s 0)

Equations (6) possess the single (finite) stationary state

xs +s r vU =. (7)2 + s + r Ys = t.

The stability of (x5, ys) is determined from the equation for the eigenvalues i,

A2 + (ys2 + sy + r + 1 - 2x y s - sx,)A + y2 + sy + r = 0. (8)

Equation (8) is obtained by linearising equations (6) about (x5, y,) and then looking for a
solution proportional to e'. The constant term in (8) is always positive and hence there will
be a Hopf bifurcation when the coefficient of A is zero. On using (7), we find that the values
of p at which Hopf bifurcations occur are given by the positive solutions of the quartic
equation

f(it) 4 + 2s3 + (s2 + 2 r- 1)t2 + 2rs + r + r
2 = 0. (9)

Equation (9) reduces to that given in [5] when s = 0. Sincef(0) > 0,f - 4 for p > 1 and
there can be at most two changes in sign of the coefficients, there will be either two or no
positive roots of equation (9). Also, clearly a necessary condition for a positive solution is
that

s2 + 2r - 1 < 0, (10)

so that there must be a limited range of values of r and s over which Hopf bifurcations can
occur. To determine this we calculate the H2, bifurcation points where the two positive roots
of f(p) = 0 are co-incident. These are found by showing f(p) = 0 together with the



270 B.F. Gray, M.J. Roberts and J.H. Merkin

equation (Gray and Roberts [7])

df
= 4p3 + 6S#2 + 2(s 2 + 2r - 1)y + 2rs = 0. (11)

d/~

/ can then be eliminated from equations (9) and (11) to give a relation between r and s.
It is much easier to proceed implicitly. From (7),

X= Y (12)
yS2 + sy + r

from which it follows, after using (12) again to eliminate r, that

dy, Y,
-y~ (13)

dxs xs(2xsys + sx - 1) '

Now, on the Hopf curve, Tr = 2x, y, + s(x, - ys) - y2 - r - 1 = 0, so that, again using
(12),

1 - SX (1 - sx )2 (X2
- 1)

= s 2x- 1' x 1)2 (14)
(2 x,2- 1)2

The H2, points are then found from the condition that dTr/dxs = 0, as well as T = 0,
which gives

dy,
(2y, + s- 2x,) + (2y + s) = 0. (15)

dxs

Expression (13) is first used in (15) and then y, eliminated using (14) giving, after some
algebra the expression for s in terms of x,:

s = x,(3 - 2xS). (16)

Then using (16) in (14) we obtain finally

r = (xs - 1)3 (17)

(with y = ys = xs(x - 1)).
Equations (16) and (17) give the H21 curve implicitly in terms of the parameter xs with,

since r > 0, s > 0, 1 < x < 3/2. Alternatively, x, can be eliminated from (16) and (17)
to give the double Hopf curve directly as

s2 = 1 - 3r1/3 + 4r. (18)

A graph of s against r as calculated from (18) is shown in Fig. 1, where we can see that we
must have the overall bounds for oscillatory solutions s < 1, r < 1/8 and that the slope of
the curve becomes infinite as r -* 0 (and s - 1).
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s

Fig. 1. The double Hopf curve as given by equation (18).

Having established the range of the parameters r and s over which Hopf bifurcations
can occur, the next step is to determine the stability of the limit cycles thus produced. To do
this we first put 5 = x + y and ? = fly where fB = ( 2 + us + r)l/2, with equations (6)
becoming

d1 (19(i))

dt # '

dq (i - r)(r2 + r2 + Sl) -p (.9(ii))

At bifurcation s = (u/2)( 1 + 2), rs = / with given by equation (9). It is straight-
forward to check that equations (19) are in normal form and, using the result given by
Guckenheimer and Holmes [8], it follows, after some calculation, that the stability is
determined by the sign of

P2 = - (1 + 4r - s2). (20)

Using (10) we can see that P2 < 0 for all values of r and s for which a Hopf bifur-
cation occurs, so that for all these values a stable limit cycle is produced surrounding the
equilibrium point (x5, ys) whenever this is unstable.

The above argument enables us to conclude that for given values of r and s such that

s < /1 - 3r'1 3 + 4r, (21)s > 0,r > 0,
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Fig. 2. Hopf bifurcation curves: (a) p plotted against s for r = 0.05, (the case r = 0 is shown by the broken line).
(b) p plotted against r for s = 0.1 (the case s = 0 is shown by the broken line).

there are two values of iu, o and , (say) with 0 < 0 < A, at which there are Hopf
functions. Furthermore, these bifurcations give rise to a stable limit cycle in > and in

< ul respectively. We shall see later (from numerical solutions) that we can regard the
Hopf bifurcation at = #, as giving birth to a stable limit cycle which then exists for all i

in the interval < < < before being destroyed at u = Po by a second Hopf bifurcation.
Typical graphs of values of i at which Hopf bifurcations occur plotted against s and r are
shown in Figs. 2a and 2b respectively. For r and s which do not satisfy (21), the stationary
state (7) is stable and (x, y) (xi, ys) as t -+ co.
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Finally in this section we obtain the solution of equation (9) when r < 1. One root is
regular in r and it is easy to show that this is

(3s) - 2s) (22)
2(1 - s) 2 r + ...

A balancing of terms in equation (9) shows that the second root is O(r / 2 ) for r small, and
in expanding in powers of r / 2 we find that this second root is of the form

= r1/2 (( 1 ) (2 - s2) r1/2+ )(23)
· = (1 - s2) '/2 +(1 s2)2

(23) clearly shows the singular nature of this second root as r 0 and as s - 1.

3. The quadratic step only (r = 0)

(i) phase-plane analysis

Here we consider the behaviour of equations (6) when r = 0. The stationary state (7)
becomes x, = 1/(p + s), ys = p and equation (9) now has just the one solution

pi = 1 -s, (24)

so that for 0 < s < I there is just one Hopf bifurcation point jp = , which, from (20),
produces a stable limit cycle in < i. We now show that this limit cycle exists for all p in
the range 0 < u < #,' provided only that s s 0. This contrasts with the case when s = 0
where the limit cycle exists only for p < < 1 ( = 0.90032). To do this we need to
determine the phase plane at infinity.

Following Andronov et al. [9], we first write x = l/z, y = u/z. This transformation maps
the quadrant x > 0, y > 0 bijectively onto the quadrant u > 0, z > 0 in the (u, z) plane
and is constructed so that as x - oo the lines y/x = constant are mapped into the lines
u = constant as u - 0+ . So the behaviour near the "arc at infinity" x2 + y2 -* o is
mapped into the neighbourhood of the line z = 0+ in the (u, z) plane. We can discuss the
behaviour of the paths at infinity in the (x, y) plane by examining the corresponding paths
in the finite (u, z) plane. (The point at infinity on the y-axis is also mapped to infinity by this
transformation and this point has to be considered separately).

In terms of u and z, the reduced forms [9], of equations (6) are

dz
dz= -ZOZ

3
_- 

2
- SUZ),

(25)

du u2 - uz2 + suz - Uz + u 3 + SU2z.
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The only (physically acceptable) equilibrium point of equations (25) on z = 0 is u = 0 (i.e.,
situated at the positive "end" if the x-axis) and we need to determine the behaviour of
equations (25) in the neighbourhood of u = 0, z = 0.

On z = 0, dz/dt = 0 and du/dt = u2 + u3 > 0 while on u = 0, du/dt = 0 and dz/dt =
-#Z 4 < 0. Also the vertical isocline is given by #z 3 - u2 - suz = 0 so that (for u > 0)

U = (-SZ + S2 z 2 4z) (26)

with u = (p/s)z2 + . . . for z < 1, and on this isocline du/dt = z3 > 0 (again for z small).
Furthermore the horizontal isocline

U2 + U(1 + SZ) + SZ - 2 - 3 = 0 (27)

has no solutions for u which are positive for z small, in fact u = -(1 - sz + . . .) and
u = -sz + .... So there is no horizontal isocline close to the origin in the positive part
of the (u, z) plane. We can use the above information to conclude that this equilibrium point
has a saddle-like behaviour near u = 0+, z = 0+ (and is unstable).

We next turn to the point at infinity at the positive "end" of the y-axis. To discuss the
behaviour near this point we put x = v/z, y = 1/z and consider the (v, z) plane near v = 0,
z = 0. The reduced forms of equations (6) are now

= - z(v - Z2 + SVZ),

(28)
dv Z3 _ -- SVZ -V

2
+ V

2
- SV2Z.

dt

We can see that v = 0, z = 0 is an equilibrium point of equations (28) and that on z = 0,
dz/dt = 0, dv/dt = -(v + v2 ) < 0 and on v = 0, dv/dt = UZ

3 > 0, dz/dt = z4 > 0.
The vertical isocline is v = z2/(1 + sz) ~ Z2 for small z, with then dv/dt = - Z2 < 0. The
horizontal isocline is given by v = uz3 + . . . (with then dv/dt = - z2 < 0). The horizontal
isocline is given by v = 9z3 + . . . (with dz/dt = Z

3 + ... > 0) for small z. From this we
can see that close to the equilibrium point v = 0, z = 0 the picture is essentially the
same as for the case when s = 0, described in [6]. Consequently this equilibrium point too
has a saddle-like behaviour (and is unstable). In particular there is an algebraic path
y = [/jx - 1/2 - ½s + ... for x < 1, y > 1 which divides the phase plane between those
trajectories which enter the positive quadrant across the y-axis and those which are turned
round by the saddle at the positive "end" of the y-axis.

To complete the discussion we note that, for equations (6), on x = 0, dx/dt = p > 0 and
dy/dt = -y < 0 and that the axis y = 0 is a solution curve, so that no trajectory can leave
the positive quadrant and any trajectory which enters the positive quadrant across the y-axis
must remain there. Then when < 1 - s the (finite) equilibrium point is unstable as well
as the equilibrium points at infinity, so, by an application of the Poincar6-Bendixson
theorem [10] there must be at least one stable limit cycle in the positive quadrant. Further,
since there is only one point of Hopf bifurcation, we can conclude that for all p < 1 - s
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Fig. 3. Schematic picture of the limit cycle W as Ip - 0 showing the four regions to be matched.

there is a single stable limit cycle surrounding the equilibrium point ((p + s)-', #) for all
# < 1 - s.

We now go on to discuss the behaviour of this limit cycle was - 0.

(ii) limit cycle as p -- 0

To discuss the behaviour of the limit cycles of equations (6) (with r = 0) as - 0 we work
in the phase plane variables (x, y) and solve for x = x( y). Equations (6) can be combined
to give

dx - y 2 -sxy
- = 2 (29)dy xy 2 - y + sxy

We have seen above that any closed orbit solution of equation (29) must be entirely in the
positive quadrant, and denoting such a closed curve by W we obtain a uniform approxi-
mation for V forp < 1. To do this we have to solve in four separate regions, a schematic
picture which is shown in Fig. 3.

We start in region I where x and y are both of 0(1) and expand

x(y; ) = xO(y) + x(y) + ... (30)

where, at leading order,

dxO X(S + y)
dy - - x(s + y)

The vertical isoclines of equation (31) are x = 0 and y = -s, and the horizontal isocline
is x = l/(s + y). Also on y = 0, dxo/dy = sxo /(l - sx) which is positive if x < /s and
negative if x < 1/s and negative if x > 1/s. This enables us to deduce that there is a family
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of integral curves of equation (31) which cross the xo-axis once in x0 < 1/s and once in
x0 > l/s. Take one such curve and let it cross the xo-axis at x0 = xa and x0 = b, where
0 < xa < l/s < Xb. Then, in I, x is given by

x = x 0 (y) + O(), (32)

x0(0) = xa (x0 < l/s), x0 (0) = Xb (x0 > 1/s). (33)

xa and xb will be determined by the matching process.
Expansion (30) breaks down when y is O(p) and this gives two further regions. Consider

region II first. In II we put

x = xa + X, y = uY (34)

where now X and Y are both of O(1). We then expand X(Y) in the form

X = X(Y) + ... (35)

with, at leading order,

dX0 sxa Y - 1

dY (1 - sxa)Y 

Equation (36) has the solution

Xo = (sxa Y - log A Y) (37)
1 -sxa

for some constant A0. Then in II we have

x = xa + (sx Y- log O Y) + ... , (38)

which matches I to leading order.
Region III is similar to region II in that y is O(p) and x = xb + O(p), and by a similar

argument to that for region II we find that in region III

x = b + l (log B Y - sx, Y) + ... (39)
sxb - 1

where Y = L-'y (as before) and Bo is a further arbitrary constant.
We then need a final region (region IV) to complete the closed curve W and which matches

with regions II and III. Writing (38) (or equivalently (39)) in terms of the original variable
y we have that x = xa + {p/(1 - sxa)} log (y/p) + .... This expansion breaks down (the
first perturbation becomes of O(1)) when y is of O(p e-'/), so that in IV y < . On this
assumption, equation (29) becomes, approximately,

d - (40)
dy (sx- )y
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Equation (40) can be solved implicitly to give

y = C(8) exp [2(I - 1)] (41)

where C(p) is an arbitrary constant. On re-arranging (41) we get

x =- + lg(2 log)C]1 (42)

where the solution with the - sign is to match with region II and that with the + sign to
region III.

On writing (42) in terms of Y = #-uy, we can see that for it to match with (38) C(p) must
be of the form

C(p) = C# e- /' (43)

where C and y are both constants of O(1). Then using (43) in (42) and expanding, we
get

= 1 / + Plog COY + (44)
s 1/ ( 2y )

The matching between (44) and (38) then gives

(1 - sXa) 2

y - 2s ' C = A0 , (45)

and the solution in IV becomes

x = -+ [ 2 log Al x exp (46)

which when expanded, now using the + sign, gives

x= - SX + 1- sx(sX) 2 log (A 0Y) + ). (47)
S s ( I - SX,)

2
)

For (47) to match with the solution in region III given by (39) we must have Bo = A0 and

xa + xb = 2- (48)
S

This final matching closes the orbit W.
It then remains to solve equation (31), subject to boundary conditions (33) and (48).

The solution of equations (31) which satisfies x0(0) = xa is found to be, after a little
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Table 1. Values of x. calculated by solving equation (50) for various s

0.999
0.995
0.99
0.98
0.95
0.90
0.85
0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40

0.930 27
0.846 71
0.785 93
0.702 58
0.546 20
0.385 18
0.274 39
0.191 60
0.128 55
0.08114
0.046 88
0.023 83
0.010 03
0.003 18
0.000 65
0.000 06

calculation,

X = Xa exp ((Xo + y + s) 2 ) (exp ( (Xa + S)2) + Xo+y+s e 2/2 ()-
Xa xa - du

On applying x0 (O) = xb to (49) and using condition (48) it follows that xa (and from this xb)
is given by the root of the equation

exp (-(2/s + s - x)2 ) exp ((x + s) 2) 2/s+s-x du = 0.
F(x) _=sxx/ exp x du = 0.2/s - x - Jx+sx~~~~~( 

(50)

It is straightforward to show that F(x) is odd about x = /s (i.e., F(2s- - x) = - F(x))
and that there is just one root in 0 < x < 1/s (the root x = l/s is the trivial solution and
is not required). In general equation (50) has to be solved numerically with the results given
in Table 1 for a range of s. However, we can deduce the behaviour of xa both as s - 0 and
as s -- 1. In the former case we find that the solution has an essential singularity of the form

Xa = 8e - 2 e-2/s-3 + . . . (51)

as s - 0, from which it follows that xa is very small even for quite moderate values of s (with
s = 0.4 expression (51) gives xa = 6.3 x 10- 5 ) in line with the results given in Table 1.

As s 1 we find, after a little calculation that xa again develops a singularity, now of the
form

a - ( 10(1 +s)s2 ) )1 +
S I \ s - 6s4 - 1

(52)

The above analysis shows that the amplitude of the limit cycle remains finite as -+ 0, in
fact, if we define the amplitude Ax = Xmax - Xmin, then

Ax+ 2 (--x a) as p- 0. (53)

(49)
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However, the solution does become singular as - 0 in that the period of the oscillatory
response becomes infinite. It is this that we now consider.

Without loss of generality we can start in region II at y = I/xa, x = xa + {(P/(1 - SXa)}
(S - log (Ao/Xa)}, then using (34) equation 6(ii) becomes

dY
= - (1 - sx,)Y, (54)

which has the solution

Y = x - exp (-( - sxa)t). (55)

Putting (55) in (38) then gives

= Xa + 1 - SXa(s exp (1 - sxa)t) + (1 - sxa)t - log °)) + (56)

Expansion (56) breaks down when t is of O (-') and this puts us into region IV with
independent variable now T = ut (and y < ). Equation (6(i)) gives, at leading order just
dx/dt = 1, so that in IV

X = Xa + (57)

to match with (56) for t > 1. Using this in (41) we obtain

= exp (S2 - 2(1 - sxa) (58)

(58) matches with (55) provided that A0 = xa, which then fixes the values of the constant
A0 .

We then move into region III, where from (58) z - 2s-'(1 -sxa) is of 0(1). In III we put
t = 2(s#)- ' (1 - sxa) + and with x = xb + 0(u) and y = Y we obtain the solutions
which match with (58) as

y = -exp (1 - sx) t -- (1 - sx) (59)

X = Xa +
1 - sxa

x [(1 - sxa)t- -(1 - sxa)- sexp (1 - SXa) t- ( -- SXa)))] (60)

Finally, to complete the cycle, the appropriate solution in region I is required. This will
match to (59) and (60) and return to the initial conditions in region II. A consideration of
the equations shows that this transition takes place on an 0(1) time scale.
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Fig. 4. Graphs of x and y against t obtained by solving equation (6) numerically for = 0.05 and s = 0.5, the
results are plotted from a time when the limit cycle has been reached.

The above analysis shows that at leading order the oscillatory response is given by

X = x + /Lt, y = 0,
2

0 < t < - (1 - SXa).
Ps

The discontinuity in the x waveform is smoothed out over a transition region on a time scale
of 0(1) with, in this transition region, y undergoing a non-zero pulse. This "saw-tooth"
waveform for x and the pulse waveform for y are clearly seen in Fig. 4 where graphs of x
and y obtained by integrating equations (6) numerically for a sufficiently long time so that
they had settled onto the limit cycle are shown. The graphs shown in Fig. 4 are for the case
s = 0.5 and pu = 0.05. Here we can see that x rises slowly from x to Xb, with y being
effectively zero. x then drops quickly back to xa to restart the cycle again while y undergoes
a brief excursion from zero.

From (61) the period T, of the oscillations is given by

2
T = 2(1 - SXA)- + 0(1)

S
(62)

and as a final check on the analysis, equations (6) were solved numerically for s = 0.5 and
for a range of #. From these solutions the period of the oscillations was calculated. The

(61)
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Table 2. Values of the period T9 and the amplitude A, obtained from solving equations (6) numerically for s = 0.5
and r = 0

p Tp I Tp A,

0.10 41.16 4.116 3.5447
0.09 45.58 4.102 3.5833
0.08 51.12 4.090 3.6221
0.07 58.22 4.075 3.6612
0.06 67.74 4.064 3.7010
0.05 81.04 4.052 3.7417
0.04 100.98 4.039 3.7837
0.03 134.26 4.028 3.8276
0.02 200.82 4.016 3.8743
0.01 400.48 4.005 3.9260
0.00 oo 4.000 3.9968

results are shown in Table 2, where it is seen that, as - O0, pTp is approaching a constant
value as required by (62).

4. Numerical solutions

Before going on to describe the numerical solutions of equations (6) we note first that, with
r = 0, the solution near the bifurcation point # = 1 - s can be obtained by a relatively
straightforward application of the method of multiple scales [10], from which it follows that,
(the details are not important and can be omitted),

y = (1 - s) + (1 -p) 2 A(T) cos (1 -st + ) + ... ,

x = 1 - ( _ -p) 2 A(T) (63)

x (sin (/1 s t + ) - /s cos ( t + )) + ...

for (, - ) 1. The amplitude A is a function of the slow time T = (p1 - )t and
satisfies the equation

dA
dT

(1 - s)A 8(1 -- I + S A2)
T( -- ) I

(64)

so that, as T -* oo,

8(1 5) 112
(65)

As expected these expansions break down as s 1. The expansion (63) and equation (64)
are the same as those given in [6] for s = 0, so that for s small the behaviour of the limit cycle
close to bifurcation at least is not drastically altered by the inclusion of the extra autocatalytic
step (5).
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Fig. 5. Amplitude A. plotted against p for s = 0.1 with r = 0, r = 0.005, r = 0.02 and r = 0.05.
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Fig. 6. Amplitude AX plotted against for s = 0.5 with r = 0, r = 0.005, r = 0.01 and r = 0.02.

Equations (6) were integrated numerically using a Runge-Kutta method. The solution
started with a perturbation to the stationary state and was continued until it had settled into
a limit cycle (i.e., when the solution had repeated itself over more than 30 cycles). An
integration step of 0.05 in time was generally used though this was reduced to 0.02 when
more accurate information about the amplitude and period of the limit cycles was required.
The number of integration steps required to reach a limit cycle depended on the values
of r and s. From these solutions the amplitude Ax = Xmax - mi, was calculated and the
results of two sets of integrations one with s = 0.1 and the other with s = 0.5 are shown
in Figs. 5 and 6 respectively.

Consider first the case when s = 0.1. Here, with r = 0, close to bifurcation, Ax grows
slowly in line with (63) and (65), it then undergoes a rapid increase around p = 0.75 before
slowly approaching its final value as given by (53) as I - 0. With r = 0.005 the picture is
similar in that Ax still grows slowly from the first Hopf bifurcation point and undergoes a
somewhat less rapid increase, but now Ax returns to zero at the second point of Hopf
bifurcation.

This rapid transition in Ax is smooth though, nevertheless, can have the appearance of a
bifurcation (which it is not). Such apparent bifurcations are called canards by Thompson
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and Stewart [11] and here we can see that this is the remnant of the actual bifurcation at
infinity in the case when s = 0, described in [6]. So it is interesting to see that the discon-
tinuous behaviour for s = 0 survives into the case when s 0. However, in the former case
the solution then becomes unbounded, whereas in the latter it remains bounded for all

> 0. Note that there has also been a shift in the value of at which this canard appears
from the original position of bifurcation at p = 0.900 32.

This canard behaviour is lost when r = 0.02 and is not seen at all in the solutions for
s = 0.5 (shown in Fig. 6). In this latter case Ax increases smoothly from the first Hopf
bifurcation point and with r = 0 approaches the constant value given by (53), while with
r 0, Ax decreases smoothly to zero at the second Hopf bifurcation point.

5. Conclusions

We have considered the effect that the inclusion of both the uncatalysed and the quadratic
autocatalytic reaction has on the cubic autocatalator in a closed system. These extra steps
in the reaction scheme regarded as small additions to the basic scheme and, where the
original scheme is stable, they give only small perturbations to the solution. However, when
the basic scheme becomes unstable their effect is much more marked. In all cases oscillatory
behaviour (stable limit cycles) result from a Hopf bifurcation and close to this bifurcation
the behaviour (amplitude and period of the oscillations) is altered only slightly by the
inclusion of these extra steps.

However, away from the bifurcation the behaviour is quite different. Without these extra
steps the solution becomes unbounded, whereas with these extra steps included (no matter
how small their contribution) the solution always remains bounded and oscillatory. With
just the inclusion of the quadratic autocatalytic step, these oscillations persist upto the point
where the model breaks down (at u = 0). While with both (or just the uncatalysed step)
there is a second Hopf bifurcation point where the oscillations cease.

So we can conclude that, for a closed system, there is a range of the parameter /p for which
the cubic autocatalator is structurally unstable, i.e., the nature of the solution becomes quite
different on the inclusion of extra terms which can be infinitesimally small.
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